Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Viruses ; 16(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38675862

ABSTRACT

Rabbit haemorrhage disease virus 2 (RHDV2) is a highly pathogenic lagovirus that causes lethal disease in rabbits and hares (lagomorphs). Since its first detection in Europe in 2010, RHDV2 has spread worldwide and has been detected in over 35 countries so far. Here, we provide the first detailed report of the detection and subsequent circulation of RHDV2 in New Zealand. RHDV2 was first detected in New Zealand in 2018, with positive samples retrospectively identified in December 2017. Subsequent time-resolved phylogenetic analysis suggested a single introduction into the North Island between March and November 2016. Genetic analysis identified a GI.3P-GI.2 variant supporting a non-Australian origin for the incursion; however, more accurate identification of the source of the incursion remains challenging due to the wide global distribution of the GI.3P-GI.2 variant. Furthermore, our analysis suggests the spread of the virus between the North and South Islands of New Zealand at least twice, dated to mid-2017 and around 2018. Further phylogenetic analysis also revealed a strong phylogeographic pattern. So far, no recombination events with endemic benign New Zealand rabbit caliciviruses have been identified. This study highlights the need for further research and surveillance to monitor the distribution and diversity of lagoviruses in New Zealand and to detect incursions of novel variants.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Phylogeny , New Zealand/epidemiology , Animals , Hemorrhagic Disease Virus, Rabbit/genetics , Hemorrhagic Disease Virus, Rabbit/isolation & purification , Hemorrhagic Disease Virus, Rabbit/classification , Rabbits/virology , Caliciviridae Infections/veterinary , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Phylogeography , Hares/virology , Retrospective Studies , Genome, Viral
2.
Viruses ; 16(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38543804

ABSTRACT

Pathogenic lagoviruses (Rabbit hemorrhagic disease virus, RHDV) are widely spread across the world and are used in Australia and New Zealand to control populations of feral European rabbits. The spread of the non-pathogenic lagoviruses, e.g., rabbit calicivirus (RCV), is less well studied as the infection results in no clinical signs. Nonetheless, RCV has important implications for the spread of RHDV and rabbit biocontrol as it can provide varying levels of cross-protection against fatal infection with pathogenic lagoviruses. In Chile, where European rabbits are also an introduced species, myxoma virus was used for localised biocontrol of rabbits in the 1950s. To date, there have been no studies investigating the presence of lagoviruses in the Chilean feral rabbit population. In this study, liver and duodenum rabbit samples from central Chile were tested for the presence of lagoviruses and positive samples were subject to whole RNA sequencing and subsequent data analysis. Phylogenetic analysis revealed a novel RCV variant in duodenal samples that likely originated from European RCVs. Sequencing analysis also detected the presence of a rabbit astrovirus in one of the lagovirus-positive samples.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Lagovirus , Animals , Rabbits , Phylogeny , Chile , Caliciviridae Infections/epidemiology , Hemorrhagic Disease Virus, Rabbit/genetics
3.
Viruses ; 15(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38140589

ABSTRACT

Australia has multiple lagoviruses with differing pathogenicity. The circulation of these viruses was traditionally determined through opportunistic sampling events. In the lead up to the nationwide release of RHDVa-K5 (GI.1aP-GI.1a) in 2017, an existing citizen science program, RabbitScan, was augmented to allow members of the public to submit samples collected from dead leporids for lagovirus testing. This study describes the information obtained from the increased number of leporid samples received between 2015 and 2022 and focuses on the recent epidemiological interactions and evolutionary trajectory of circulating lagoviruses in Australia between October 2020 and December 2022. A total of 2771 samples were tested from January 2015 to December 2022, of which 1643 were lagovirus-positive. Notable changes in the distribution of lagovirus variants were observed, predominantly in Western Australia, where RHDV2-4c (GI.4cP-GI.2) was detected again in 2021 after initially being reported to be present in 2018. Interestingly, we found evidence that the deliberately released RHDVa-K5 was able to establish and circulate in wild rabbit populations in WA. Overall, the incorporation of citizen science approaches proved to be a cost-efficient method to increase the sampling area and enable an in-depth analysis of lagovirus distribution, genetic diversity, and interactions. The maintenance of such programs is essential to enable continued investigations of the critical parameters affecting the biocontrol of feral rabbit populations in Australia, as well as to enable the detection of any potential future incursions.


Subject(s)
Caliciviridae Infections , Citizen Science , Hemorrhagic Disease Virus, Rabbit , Lagovirus , Animals , Rabbits , Hemorrhagic Disease Virus, Rabbit/genetics , Molecular Epidemiology , Lagovirus/genetics , Phylogeny , Australia/epidemiology
4.
Viruses ; 15(9)2023 08 25.
Article in English | MEDLINE | ID: mdl-37766220

ABSTRACT

Rabbit haemorrhagic disease virus (RHDV) is established as a landscape-scale biocontrol that assists the management of invasive European rabbits and their impacts in both Australia and New Zealand. In addition to this, it is also available to land managers to augment rabbit control efforts at a local scale. However, current methods of deploying RHDV to rabbits that rely on the consumption of virus-treated baits can be problematic as rabbits are reluctant to consume bait when there is abundant, green, protein-rich feed available. We ran a suite of interrupted time-series experiments to compare the duration of infectivity of two conventional (carrot and oat baits) and two novel (meat bait and soil burrow spray) methods of deploying RHDV to rabbits. All methods effectively killed exposed rabbits. Soil burrow spray and carrot baits resulted in infection and mortality out to 5 days post their deployment in the field, and meat baits caused infection out to 10 days post their deployment. In contrast, oat baits continued to infect and kill exposed rabbits out to 20 days post deployment. Molecular assays demonstrated high viral loads in deployed baits beyond the duration for which they were infectious or lethal to rabbits. Based on our results, we suggest that the drying of meat baits may create a barrier to effective transmission of RHDV by adult flies within 10 days. We therefore hypothesise that fly larvae production and development on infected tissues is critical to prolonged viral transmission from meat baits, and similarly from carcasses of RHDV mortalities, via mechanical fly vectors. Our study demonstrates that meat baits and soil spray could provide additional virus deployment options that remove the need for rabbits to consume baits at times when they are reluctant to do so.


Subject(s)
Hemorrhagic Disease Virus, Rabbit , Rabbits , Animals , Australia , Biological Assay , Desiccation , Soil
5.
J Gen Virol ; 104(8)2023 08.
Article in English | MEDLINE | ID: mdl-37584657

ABSTRACT

The genus Lagovirus of the family Caliciviridae contains some of the most virulent vertebrate viruses known. Lagoviruses infect leporids, such as rabbits, hares and cottontails. Highly pathogenic viruses such as Rabbit haemorrhagic disease virus 1 (RHDV1) cause a fulminant hepatitis that typically leads to disseminated intravascular coagulation within 24-72 h of infection, killing over 95 % of susceptible animals. Research into the pathophysiological mechanisms that are responsible for this extreme phenotype has been hampered by the lack of a reliable culture system. Here, we report on a new ex vivo model for the cultivation of lagoviruses in cells derived from the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus). We show that three different lagoviruses, RHDV1, RHDV2 and RHDVa-K5, replicate in monolayer cultures derived from rabbit hepatobiliary organoids, but not in monolayer cultures derived from cat (Felis catus) or mouse (Mus musculus) organoids. Virus multiplication was demonstrated by (i) an increase in viral RNA levels, (ii) the accumulation of dsRNA viral replication intermediates and (iii) the expression of viral structural and non-structural proteins. The establishment of an organoid culture system for lagoviruses will facilitate studies with considerable implications for the conservation of endangered leporid species in Europe and North America, and the biocontrol of overabundant rabbit populations in Australia and New Zealand.


Subject(s)
Caliciviridae Infections , Hares , Hemorrhagic Disease Virus, Rabbit , Lagovirus , Animals , Cats , Mice , Rabbits , Phylogeny , Hemorrhagic Disease Virus, Rabbit/genetics , Lagovirus/genetics , Organoids
6.
Viruses ; 15(5)2023 05 12.
Article in English | MEDLINE | ID: mdl-37243245

ABSTRACT

Following the arrival of rabbit haemorrhagic disease virus 2 (RHDV2) in Australia, average rabbit population abundances were reduced by 60% between 2014 and 2018 based on monitoring data acquired from 18 sites across Australia. During this period, as the seropositivity to RHDV2 increased, concurrent decreases were observed in the seroprevalence of both the previously circulating RHDV1 and RCVA, a benign endemic rabbit calicivirus. However, the detection of substantial RHDV1 seropositivity in juvenile rabbits suggested that infections were continuing to occur, ruling out the rapid extinction of this variant. Here we investigate whether the co-circulation of two pathogenic RHDV variants was sustained after 2018 and whether the initially observed impact on rabbit abundance was still maintained. We monitored rabbit abundance and seropositivity to RHDV2, RHDV1 and RCVA at six of the initial eighteen sites until the summer of 2022. We observed sustained suppression of rabbit abundance at five of the six sites, with the average population reduction across all six sites being 64%. Across all sites, average RHDV2 seroprevalence remained high, reaching 60-70% in adult rabbits and 30-40% in juvenile rabbits. In contrast, average RHDV1 seroprevalence declined to <3% in adult rabbits and 5-6% in juvenile rabbits. Although seropositivity continued to be detected in a low number of juvenile rabbits, it is unlikely that RHDV1 strains now play a major role in the regulation of rabbit abundance. In contrast, RCVA seropositivity appears to be reaching an equilibrium with that of RHDV2, with RCVA seroprevalence in the preceding quarter having a strong negative effect on RHDV2 seroprevalence and vice versa, suggesting ongoing co-circulation of these variants. These findings highlight the complex interactions between different calicivirus variants in free-living rabbit populations and demonstrate the changes in interactions over the course of the RHDV2 epizootic as it has moved towards endemicity. While it is encouraging from an Australian perspective to see sustained suppression of rabbit populations in the eight years following the arrival of RHDV2, it is likely that rabbit populations will eventually recover, as has been observed with previous rabbit pathogens.


Subject(s)
Caliciviridae Infections , Hares , Hemorrhagic Disease Virus, Rabbit , Animals , Rabbits , Hemorrhagic Disease Virus, Rabbit/genetics , Seroepidemiologic Studies , Australia/epidemiology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Caliciviridae Infections/pathology , Phylogeny
7.
Parasitol Int ; 91: 102642, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35944836

ABSTRACT

To genetically assess the Australian distribution and frequency of Eimeria species in wild rabbits, with a primary focus on Eimeria intestinalis and Eimeria flavescens as possible additional agents of rabbit biocontrol, the distal colon and faecal samples from wild rabbits sourced from 26 Australian locations with mean annual rainfalls of between 252 mm and 925 mm were analysed using amplicon sequencing of the ITS1 region. Contrary to previous microscopy studies which had only detected E. flavescens on mainland Australia at Wellstead in south-west Western Australia, we detected this species at all 23 effectively sampled sites. The more pathogenic E. intestinalis was only found at 52.2% of sites. Three unique Eimeria genotypes were detected that did not align to the 11 published sequences using a pairwise-match threshold of 90%, and may represent unsequenced known species or novel species. One genotype we termed E. Au19SH and was detected at 20 sites, E. Au19CO was detected at eight sites, and E. Au19CN was detected in one rabbit at Crows Nest (Qld). Site diversity ranged from only five Eimeria species at Boboyan (ACT) to 13 unique sequences at Cargo (NSW). Eimeria diversity in individual rabbits ranged from 11 unique sequences in a rabbit at Wellstead (WA) and a rabbit at Cargo (NSW), to one in 17 rabbits and zero in six rabbits. The three rabbit age classes averaged 4.3 Eimeria species per rabbit. No relationship was found between the number of Eimeria species detected and mean annual rainfall. As Eimeria species were found to be fairly ubiquitous at most sites they appear to be an unlikely additional candidate to assist the control of pest rabbits in Australia.


Subject(s)
Coccidiosis , Eimeria , Animals , Australia/epidemiology , Coccidiosis/epidemiology , Coccidiosis/veterinary , Eimeria/genetics , Feces , Prevalence , Rabbits
8.
Proc Natl Acad Sci U S A ; 119(35): e2122734119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994668

ABSTRACT

Biological invasions are a major cause of environmental and economic disruption. While ecological factors are key determinants of their success, the role of genetics has been more challenging to demonstrate. The colonization of Australia by the European rabbit is one of the most iconic and devastating biological invasions in recorded history. Here, we show that despite numerous introductions over a 70-y period, this invasion was triggered by a single release of a few animals that spread thousands of kilometers across the continent. We found genetic support for historical accounts that these were English rabbits imported in 1859 by a settler named Thomas Austin and traced the origin of the invasive population back to his birthplace in England. We also find evidence of additional introductions that established local populations but have not spread geographically. Combining genomic and historical data we show that, contrary to the earlier introductions, which consisted mostly of domestic animals, the invasive rabbits had wild ancestry. In New Zealand and Tasmania, rabbits also became a pest several decades after being introduced. We argue that the common denominator of these invasions was the arrival of a new genotype that was better adapted to the natural environment. These findings demonstrate how the genetic composition of invasive individuals can determine the success of an introduction and provide a mechanism by which multiple introductions can be required for a biological invasion.


Subject(s)
Animals, Wild , Genetics, Population , Introduced Species , Rabbits , Animals , Animals, Domestic , Animals, Wild/genetics , Animals, Wild/physiology , Australia , Genetic Variation , Genomics , Genotype , History, 19th Century , History, 20th Century , History, 21st Century , Introduced Species/statistics & numerical data , New Zealand , Rabbits/genetics , Rabbits/physiology , Tasmania , Time Factors
9.
Front Microbiol ; 13: 923256, 2022.
Article in English | MEDLINE | ID: mdl-35923397

ABSTRACT

The exact function(s) of the lagovirus non-structural protein p23 is unknown as robust cell culture systems for the Rabbit haemorrhagic disease virus (RHDV) and other lagoviruses have not been established. Instead, a range of in vitro and in silico models have been used to study p23, revealing that p23 oligomerizes, accumulates in the cytoplasm, and possesses a conserved C-terminal region with two amphipathic helices. Furthermore, the positional homologs of p23 in other caliciviruses have been shown to possess viroporin activity. Here, we report on the mechanistic details of p23 oligomerization. Site-directed mutagenesis revealed the importance of an N-terminal cysteine for dimerization. Furthermore, we identified cellular interactors of p23 using stable isotope labeling with amino acids in cell culture (SILAC)-based proteomics; heat shock proteins Hsp70 and 110 interact with p23 in transfected cells, suggesting that they 'chaperone' p23 proteins before their integration into cellular membranes. We investigated changes to the global transcriptome and proteome that occurred in infected rabbit liver tissue and observed changes to the misfolded protein response, calcium signaling, and the regulation of the endoplasmic reticulum (ER) network. Finally, flow cytometry studies indicate slightly elevated calcium concentrations in the cytoplasm of p23-transfected cells. Taken together, accumulating evidence suggests that p23 is a viroporin that might form calcium-conducting channels in the ER membranes.

10.
Transbound Emerg Dis ; 69(5): e2629-e2640, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35687756

ABSTRACT

Australia is known for its long history of using biocontrol agents, such as myxoma virus (MYXV) and rabbit haemorrhagic disease virus (RHDV), to manage wild European rabbit populations. Interestingly, while undertaking RHDV surveillance of rabbits that were found dead, we observed that approximately 40% of samples were negative for RHDV. To investigate whether other infectious agents are responsible for killing rabbits in Australia, we subjected a subset of these RHDV-negative liver samples to metatranscriptomic sequencing. In addition, we investigated whether the host transcriptome data could provide additional differentiation between likely infectious versus non-infectious causes of death. We identified transcripts from several Clostridia species, Pasteurella multocida, Pseudomonas spp., and Eimeria stiedae, in liver samples of several rabbits that had died suddenly, all of which are known to infect rabbits and are capable of causing disease and mortality. In addition, we identified Hepatitis E virus and Cyniclomyces yeast in some samples, both of which are not usually associated with severe disease. In one-third of the sequenced total liver RNAs, no infectious agent could be identified. While metatranscriptomic sequencing cannot provide definitive evidence of causation, additional host transcriptome analysis provided further insights to distinguish between pathogenic microbes and commensals or environmental contaminants. Interestingly, three samples where no pathogen could be identified showed evidence of up-regulated host immune responses, while immune response pathways were not up-regulated when E. stiedae, Pseudomonas, or yeast were detected. In summary, although no new putative rabbit pathogens were identified, this study provides a robust workflow for future investigations into rabbit mortality events.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Myxoma virus , Animals , Australia/epidemiology , Caliciviridae Infections/veterinary , Hemorrhagic Disease Virus, Rabbit/genetics , Rabbits , Saccharomyces cerevisiae
11.
Vaccines (Basel) ; 10(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35632422

ABSTRACT

The use of rabbit hemorrhagic disease virus (RHDV) as a biocontrol agent to control feral rabbit populations in Australia, in combination with circulating endemic strains, provides a unique environment to observe the interactions between different lagoviruses competing for the same host. Following the arrival of RHDV2 (GI.2) in Australia, it became necessary to investigate the potential for immunological cross-protection between different variants, and the implications of this for biocontrol programs and vaccine development. Laboratory rabbits of various immune status-(1) rabbits with no detectable immunity against RHDV; (2) rabbits with experimentally acquired immunity after laboratory challenge; (3) rabbits immunised with a GI.2-specific or a multivalent RHDV inactivated virus prototype vaccine; or (4) rabbits with naturally acquired immunity-were challenged with one of three different RHDV variants (GI.1c, GI.1a or GI.2). The degree of cross-protection observed in immune rabbits was associated with the variant used for challenge, infectious dose of the virus and age, or time since acquisition of the immunity, at challenge. The immune status of feral rabbit populations should be determined prior to intentional RHDV release because of the high survival proportions in rabbits with pre-existing immunity. In addition, to protect domestic rabbits in Australia, a multivalent RHDV vaccine should be considered because of the limited cross-protection observed in rabbits given monovalent vaccines.

12.
Transbound Emerg Dis ; 69(5): e1959-e1971, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35315981

ABSTRACT

Rabbit haemorrhagic disease virus 2 (RHDV2) is now the dominant calicivirus circulating in wild rabbit populations in Australia. This study compared the infection and case fatality rates of RHDV2 and two RHDVs in wild rabbits, as well as their ability to overcome immunity to the respective other strains. Wild rabbits were allocated to groups either blindly or based on pre-screening for RHDV/RHDV2 antibodies at capture. Rabbits were monitored regularly until their death or humane killing at 7 days post infection. Liver and eyeball samples were collected for lagovirus testing and aging rabbits, respectively. At capture, rabbits showed high seroprevalence to RHDV2 but not to RHDV. In RHDV/RHDV2 seronegative rabbits at capture, infection rates were highest in those inoculated with RHDV2 (81.8%, 18 out of 22), followed by K5 (53.8%, seven out of 13) and CZECH (40.0%, two out of five), but these differences were not statistically significant. In rabbits with previous exposure to RHDV2 at capture, infection rates were highest when inoculated with K5 (59.6%, 31 out of 52) followed by CZECH (46.0%, 23 out of 50), with infection rates higher in younger rabbits for both viruses. In RHDV/RHDV2 seronegative rabbits at capture, case fatality rates were highest for those inoculated with K5 (71.4%), followed by RHDV2 (50.0%) and CZECH (50.0%). In rabbits with previous exposure to RHDV2 at capture, case fatality rates were highest in rabbits inoculated with K5 (12.9%) followed by CZECH (8.7%), with no case fatalities following RHDV2 inoculation. Case fatality rates did not differ significantly between inoculums in either serostatus group at capture. Based on multivariable modelling, time to death post RHDV inoculation increased in rabbits with recent RHDV2 exposure compared with seronegative rabbits and with age. The results suggest that RHDV2 may cause higher mortalities than other variants in seronegative rabbit populations but that K5 may be more effective in reducing rabbit populations in an RHDV2-dominant landscape.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Lagovirus , Animals , Caliciviridae Infections/veterinary , Phylogeny , Rabbits , Seroepidemiologic Studies
13.
Transbound Emerg Dis ; 69(3): 1118-1130, 2022 May.
Article in English | MEDLINE | ID: mdl-33724677

ABSTRACT

Rabbit haemorrhagic disease virus (RHDV) is highly pathogenic to European rabbits. Until recently, only one serotype of RHDV was known, GI.1/RHDV. RHDV2/GI.2 is a novel virus that has rapidly spread and become the dominant pathogenic calicivirus in wild rabbits worldwide. It is speculated that RHDV2 has three competitive advantages over RHDV: (a) the ability to partially overcome immunity to other variants; (b) the ability to clinically infect young rabbits; and (c) a wider host range. These differences would be expected to influence virus transmission dynamics. We used markers of recent infection (IgM/IgA antibodies) to investigate virus transmission dynamics pre and post the arrival of RHDV2. Our data set contained over 3,900 rabbits sampled across a 7-year period at 12 Australian sites. Following the arrival of RHDV2, seasonal peaks in IgM and IgA seropositivity shifted forward one season, from winter to autumn and spring to winter, respectively. Contrary to predictions, we found only weak effects of rabbit age, seropositivity to non-pathogenic calicivirus RCV-A1 and population abundance on IgM/IgA seropositivity. Our results demonstrate that RHDV2 enters rabbit populations shortly after the commencement of annual breeding cycles. Upon entering, the population RHDV2 undergoes extensive replication in young rabbits, causing clinical disease, high virus shedding, mortality and the creation of virus-laden carcasses. This results in high virus contamination in the environment, furthering the transmission of RHDV2 and initiating outbreaks, whilst simultaneously removing the susceptible cohort required for the effective transmission of RHDV. Although RHDV may enter the population at the same time point, it is sub-clinical in young rabbits, causing minimal virus shedding and low environmental contamination. Our results demonstrate a major shift in epidemiological patterns in virus transmission, providing the first evidence that RHDV2's ability to clinically infect young rabbits is a key competitive advantage in the field.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Animals , Australia/epidemiology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Humans , Immunoglobulin A , Immunoglobulin M , Phylogeny , Rabbits
14.
Transbound Emerg Dis ; 69(2): 895-902, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33560563

ABSTRACT

The European rabbit (Oryctolagus cuniculus) is one of the most devastating invasive species in Australia. Since the 1950s, myxoma virus (MYXV) and rabbit haemorrhagic disease virus (RHDV) have been used to manage overabundant rabbit populations. Resistance to MYXV was observed within a few years of the release. More recently, resistance to lethal RHDV infection has also been reported, undermining the efficiency of landscape-scale rabbit control. Previous studies suggest that genetic resistance to lethal RHDV infection may differ locally between populations, yet the mechanisms of genetic resistance remain poorly understood. Here, we used genotyping by sequencing (GBS) data representing a reduced representation of the genome, to investigate Australian rabbit populations. Our aims were to understand the relationship between populations and identify possible genomic signatures of selection for RHDV resistance. One population we investigated had previously been reported to show levels of resistance to lethal RHDV infection. This population was compared to three other populations with lower or no previously reported RHDV resistance. We identified a set of novel candidate genes that could be involved in host-pathogen interactions such as virus binding and infection processes. These genes did not overlap with previous studies on RHDV resistance carried out in different rabbit populations, suggesting that multiple mechanisms are feasible. These findings provide useful insights into the different potential mechanisms of genetic resistance to RHDV virus which will inform future functional studies in this area.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Myxoma virus , Animals , Australia/epidemiology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/genetics , Caliciviridae Infections/veterinary , Genomics , Hemorrhagic Disease Virus, Rabbit/genetics , Myxoma virus/genetics , Rabbits
15.
Transbound Emerg Dis ; 69(3): 1020-1029, 2022 May.
Article in English | MEDLINE | ID: mdl-33683829

ABSTRACT

Amongst newly developed approaches to analyse molecular data, phylodynamic models are receiving much attention because of their potential to reveal changes to viral populations over short periods. This knowledge can be very important for understanding disease impacts. However, their accuracy needs to be fully understood, especially in relation to wildlife disease epidemiology, where sampling and prior knowledge may be limited. The release of the rabbit haemorrhagic disease virus (RHDV) as biological control in naïve rabbit populations in Australia in 1996 provides a unique data set with which to validate phylodynamic models. By comparing results obtained from RHDV sequence data with our current understanding of RHDV epidemiology in Australia, we evaluated the performances of these recently developed models. In line with our expectations, coalescent analyses detected a sharp increase in the virus population size in the first few months after release, followed by a more gradual increase. Phylodynamic analyses using a birth-death model generated effective reproductive number estimates (the average number of secondary infections per each infectious case, Re ) larger than one for most of the epochs considered. However, the possible range of the initial Re included estimates lower than one despite the known rapid spread of RHDV in Australia. Furthermore, the analyses that accounted for geographical structuring failed to converge. We argue that the difficulties that we encountered most likely stem from the fact that the samples available from 1996 to 2014 were too sparse with respect to both geographic and within outbreak coverage to adequately infer some of the model parameters. In general, while these phylodynamic analyses proved to be greatly informative in some regards, we caution that their interpretation may not be straightforward. We recommend further research to evaluate the robustness of these models to assumption violations and sensitivity to sampling regimes.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Animals , Animals, Wild , Australia/epidemiology , Caliciviridae Infections/veterinary , Hemorrhagic Disease Virus, Rabbit/genetics , Population Density , Rabbits
16.
Viruses ; 15(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36680062

ABSTRACT

Since their introduction in 1859, European rabbits (Oryctolagus cuniculus) have had a devastating impact on agricultural production and biodiversity in Australia, with competition and land degradation by rabbits being one of the key threats to agricultural and biodiversity values in Australia. Biocontrol agents, with the most important being the rabbit haemorrhagic disease virus 1 (RHDV1), constitute the most important landscape-scale control strategies for rabbits in Australia. Monitoring field strain dynamics is complex and labour-intensive. Here, using phylodynamic models to analyse the available RHDV molecular data, we aimed to: investigate the epidemiology of various strains, use molecular data to date the emergence of new variants and evaluate whether different strains are outcompeting one another. We determined that the two main pathogenic lagoviruses variants in Australia (RHDV1 and RHDV2) have had similar dynamics since their release, although over different timeframes (substantially shorter for RHDV2). We also found a strong geographic difference in their activities and evidence of overall competition between the two viruses.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Animals , Rabbits , Hemorrhagic Disease Virus, Rabbit/genetics , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Australia/epidemiology , Phylogeny
17.
Pathogens ; 10(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34959591

ABSTRACT

In 2020, Hepatitis E virus (HEV) was detected for the first time in Australian rabbits. To improve our understanding of the genetic diversity and distribution of the virus, 1635 rabbit liver samples from locations across Australia were screened via RT-qPCR for HEV. HEV genomes were amplified and sequenced from 48 positive samples. Furthermore, we tested 380 serum samples from 11 locations across Australia for antibodies against HEV. HEV was detected in rabbits from all states and territories, except the Northern Territory. Seroprevalence varied between locations (from 0% to 22%), demonstrating that HEV is widely distributed in rabbit populations across Australia. Phylogenetic analyses showed that Australian HEV sequences are genetically diverse and that HEV was likely introduced into Australia independently on several occasions. In summary, this study broadens our understanding of the genetic diversity of rabbit HEV globally and shows that the virus is endemic in both domestic and wild rabbit populations in Australia.

18.
Virus Evol ; 7(2): veab080, 2021.
Article in English | MEDLINE | ID: mdl-34754513

ABSTRACT

The diversity of lagoviruses (Caliciviridae) in Australia has increased considerably in recent years. By the end of 2017, five variants from three viral genotypes were present in populations of Australian rabbits, while prior to 2014 only two variants were known. To understand the evolutionary interactions among these lagovirus variants, we monitored their geographical distribution and relative incidence over time in a continental-scale competition study. Within 3 years of the incursion of rabbit haemorrhagic disease virus 2 (RHDV2, denoted genotype GI.1bP-GI.2 [polymerase genotype]P-[capsid genotype]) into Australia, two novel recombinant lagovirus variants emerged: RHDV2-4e (genotype GI.4eP-GI.2) in New South Wales and RHDV2-4c (genotype GI.4cP-GI.2) in Victoria. Although both novel recombinants contain non-structural genes related to those from benign, rabbit-specific, enterotropic viruses, these variants were recovered from the livers of both rabbits and hares that had died acutely. This suggests that the determinants of host and tissue tropism for lagoviruses are associated with the structural genes, and that tropism is intricately connected with pathogenicity. Phylogenetic analyses demonstrated that the RHDV2-4c recombinant emerged independently on multiple occasions, with five distinct lineages observed. Both the new RHDV2-4e and -4c recombinant variants replaced the previous dominant parental RHDV2 (genotype GI.1bP-GI.2) in their respective geographical areas, despite sharing an identical or near-identical (i.e. single amino acid change) VP60 major capsid protein with the parental virus. This suggests that the observed replacement by these recombinants was not driven by antigenic variation in VP60, implicating the non-structural genes as key drivers of epidemiological fitness. Molecular clock estimates place the RHDV2-4e recombination event in early to mid-2015, while the five RHDV2-4c recombination events occurred from late 2015 through to early 2017. The emergence of at least six viable recombinant variants within a 2-year period highlights the high frequency of these events, detectable only through intensive surveillance, and demonstrates the importance of recombination in lagovirus evolution.

19.
Vaccines (Basel) ; 9(10)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34696305

ABSTRACT

Rabbit haemorrhagic disease virus 2 (RHDV2) is a lagovirus in the family Caliciviridae. The closely related Rabbit haemorrhagic disease virus (RHDV, termed RHDV1 throughout this manuscript for clarity) has been used extensively as a biocontrol agent in Australia since the mid-1990s to manage wild rabbit populations, a major economic and environmental pest species. Releasing RHDV1 into populations with a high proportion of rabbits less than 8-10 weeks of age leads to non-lethal infection in many of these young animals, with subsequent seroconversion and long-term immunity against reinfection. In contrast, RHDV2 causes lethal disease even in young rabbits, potentially offering substantial benefits for rabbit management programs over RHDV1. However, it is not clear how acquired resistance from maternal antibodies may influence immunity after RHDV2 infection. In this study, we assessed serological responses after RHDV2 challenge in young rabbits of three different ages (5-, 7-, or 9-weeks-old) that were passively immunised with either high- (titre of 2560 by RHDV IgG ELISA; 2.41 mg/mL total protein) or low- (titre of 160-640 by RHDV IgG ELISA; 1.41 mg/mL total protein) dose RHDV2 IgG to simulate maternal antibodies. All rabbits treated with a high dose and 75% of those treated with a low dose of RHDV2 IgG survived virus challenge. Surviving animals developed robust lagovirus-specific IgA, IgM, and IgG responses within 10 days post infection. These findings demonstrate that the protection against RHDV2 conferred by passive immunisation is not sterilising. Correspondingly, this suggests that the presence of maternal antibodies in wild rabbit populations may impede the effectiveness of RHDV2 as a biocontrol.

20.
Front Microbiol ; 12: 712710, 2021.
Article in English | MEDLINE | ID: mdl-34335548

ABSTRACT

The Caliciviridae are a family of viruses with a single-stranded, non-segmented RNA genome of positive polarity. The ongoing discovery of caliciviruses has increased the number of genera in this family to 11 (Norovirus, Nebovirus, Sapovirus, Lagovirus, Vesivirus, Nacovirus, Bavovirus, Recovirus, Salovirus, Minovirus, and Valovirus). Caliciviruses infect a wide range of hosts that include fishes, amphibians, reptiles, birds, and marine and land mammals. All caliciviruses have a genome that encodes a major and a minor capsid protein, a genome-linked viral protein, and several non-structural proteins. Of these non-structural proteins, only the helicase, protease, and RNA-dependent RNA polymerase share clear sequence and structural similarities with proteins from other virus families. In addition, all caliciviruses express two or three non-structural proteins for which functions have not been clearly defined. The sequence diversity of these non-structural proteins and a multitude of processing strategies suggest that at least some have evolved independently, possibly to counteract innate and adaptive immune responses in a host-specific manner. Studying these proteins is often difficult as many caliciviruses cannot be grown in cell culture. Nevertheless, the study of recombinant proteins has revealed many of their properties, such as intracellular localization, capacity to oligomerize, and ability to interact with viral and/or cellular proteins; the release of non-structural proteins from transfected cells has also been investigated. Here, we will summarize these findings and discuss recent in silico studies that identified previously overlooked putative functional domains and structural features, including transmembrane domains that suggest the presence of viroporins.

SELECTION OF CITATIONS
SEARCH DETAIL
...